The generator matrix

 1  0  0  1  1  1  1  1  1  1  1 2X+6  3  1  1  1  1  1  X  1 X+6  1  1  1  1  6 X+6  3  1 2X+3  1  1 2X+6  1  1  1 X+6  1  1  1  X  1  1  1  6  1  1  6  1 2X X+6  1  1  1  1  X 2X  1  1
 0  1  0  0  3 2X+7  8  1 2X+4 2X+5  2  1  1 X+6 2X+1 X+1 2X+1 X+5  1 2X+6  1 X+8 X+6  8 2X+6  1 2X  1 X+4  0  X 2X+8  1  5 X+7  5  1 X+2  X 2X+5  1 2X+2 2X+4  1  1  7  7  1  7  X  1  X  2 2X+5  6  1  1 X+5  3
 0  0  1 2X+7  5 2X+5  8  1  0  7 2X+6 2X+7  5 2X X+2  3 2X+4 2X+6 X+3  7 X+5  2  5 X+1 2X+7  4  1  X 2X  1  0 2X+8  8  3 2X+2 2X+4 2X+7 2X+8 X+8  X 2X X+2  7 2X+3 2X+2 2X+6 2X+4  4  6  1  1 X+4 2X+3  5  8  2  0 2X+8 2X+5
 0  0  0  6  6  6  6  6  6  6  6  0  0  6  3  3  0  0  6  3  3  3  3  0  0  3  6  3  0  3  3  0  6  0  0  3  6  6  0  3  3  0  3  0  3  3  6  6  3  0  6  3  3  6  3  0  0  3  0

generates a code of length 59 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 110.

Homogenous weight enumerator: w(x)=1x^0+714x^110+724x^111+1926x^112+4230x^113+2720x^114+4284x^115+7284x^116+4046x^117+5922x^118+8064x^119+3648x^120+4662x^121+5268x^122+1744x^123+1548x^124+1488x^125+424x^126+126x^127+114x^128+38x^129+42x^131+18x^132+12x^134+2x^135

The gray image is a code over GF(3) with n=531, k=10 and d=330.
This code was found by Heurico 1.16 in 7.25 seconds.